Platelet 12-LOX is essential for FcγRIIa-mediated platelet activation.

نویسندگان

  • Jennifer Yeung
  • Benjamin E Tourdot
  • Pilar Fernandez-Perez
  • Joanne Vesci
  • Jin Ren
  • Christopher J Smyrniotis
  • Diane K Luci
  • Ajit Jadhav
  • Anton Simeonov
  • David J Maloney
  • Theodore R Holman
  • Steven E McKenzie
  • Michael Holinstat
چکیده

Platelets are essential in maintaining hemostasis following inflammation or injury to the vasculature. Dysregulated platelet activity often results in thrombotic complications leading to myocardial infarction and stroke. Activation of the FcγRIIa receptor leads to immune-mediated thrombosis, which is often life threatening in patients undergoing heparin-induced thrombocytopenia or sepsis. Inhibiting FcγRIIa-mediated activation in platelets has been shown to limit thrombosis and is the principal target for prevention of immune-mediated platelet activation. In this study, we show for the first time that platelet 12(S)-lipoxygenase (12-LOX), a highly expressed oxylipin-producing enzyme in the human platelet, is an essential component of FcγRIIa-mediated thrombosis. Pharmacologic inhibition of 12-LOX in human platelets resulted in significant attenuation of FcγRIIa-mediated aggregation. Platelet 12-LOX was shown to be essential for FcγRIIa-induced phospholipase Cγ2 activity leading to activation of calcium mobilization, Rap1 and protein kinase C activation, and subsequent activation of the integrin αIIbβ3. Additionally, platelets from transgenic mice expressing human FcγRIIa but deficient in platelet 12-LOX, failed to form normal platelet aggregates and exhibited deficiencies in Rap1 and αIIbβ3 activation. These results support an essential role for 12-LOX in regulating FcγRIIa-mediated platelet function and identifies 12-LOX as a potential therapeutic target to limit immune-mediated thrombosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein kinase C regulation of 12-lipoxygenase-mediated human platelet activation.

Platelet activation is important in the regulation of hemostasis and thrombosis. Uncontrolled activation of platelets may lead to arterial thrombosis, which is a major cause of myocardial infarction and stroke. After activation, metabolism of arachidonic acid (AA) by 12-lipoxygenase (12-LOX) may play a significant role in regulating the degree and stability of platelet activation because inhibi...

متن کامل

Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation.

Human platelet-type 12-lipoxygenase (12-LOX) has recently been shown to play an important role in regulation of human platelet function by reacting with arachidonic acid (AA). However, a number of other fatty acids are present on the platelet surface that, when cleaved from the phospholipid, can be oxidized by 12-LOX. We sought to characterize the substrate specificity of 12-LOX against six ess...

متن کامل

Human platelet activation by Escherichia coli: roles for FcγRIIA and integrin αIIbβ3

Gram-negative Escherichia coli cause diseases such as sepsis and hemolytic uremic syndrome in which thrombotic disorders can be found. Direct platelet-bacterium interactions might contribute to some of these conditions; however, mechanisms of human platelet activation by E. coli leading to thrombus formation are poorly understood. While the IgG receptor FcγRIIA has a key role in platelet respon...

متن کامل

Human platelet activation by Escherichia coli

Gram-negative Escherichia coli cause diseases such as sepsis and hemolytic uremic syndrome in which thrombotic disorders can be found. Direct platelet–bacterium interactions might contribute to some of these conditions; however, mechanisms of human platelet activation by E. coli leading to thrombus formation are poorly understood. While the IgG receptor FcγRIIA has a key role in platelet respon...

متن کامل

Amplification of bacteria-induced platelet activation is triggered by FcγRIIA, integrin αIIbβ3, and platelet factor 4.

Bacterial adhesion to platelets is mediated via a range of strain-specific bacterial surface proteins that bind to a variety of platelet receptors. It is unclear how these interactions lead to platelet activation. We demonstrate a critical role for the immune receptor FcγRIIA, αIIbβ3, and Src and Syk tyrosine kinases in platelet activation by Staphylococcus aureus, Streptococcus sanguinis, Stre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 124 14  شماره 

صفحات  -

تاریخ انتشار 2014